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ly demonstrated that all-optical switching
can be realized in an atomic medium
within an optical ring cavity.

Kerr nonlinearity is a phenomenologi-
cal process by which the index of refrac-
tion of a medium is modified by the inten-
sity of the light passing through the medi-
um. We have directly measured the Kerr
nonlinear index of refraction as a function
of frequency detuning from resonance of a
probe beam in rubidium vapor? and
showed that EIT significantly modifies the
Kerr nonlinear index near resonance [Fig.
1(a)]. We find the Kerr nonlinear index
depends strongly on several experimental-
ly controllable parameters: the probe and
coupling laser frequency detunings and
the coupling optical power.* With only
small frequency detunings (<10 MHz) the
Kerr nonlinear index can change from a
large positive value of ~7 x 109%cm¥W to
almost nothing, or it can change sign.
This kind of sensitive control in nonlin-
earity allowed us to observe bistability and
dynamic instability at low thresholds.*

With such controllable nonlinearity, we
also achieved all-optical switching in a
three-level atomic medium (a vapor cell)
by switching between two distinct steady-
state intensities inside an optical cavity
(Author, is the three-level atomic medi-
um a vapor cell or is it inside a vapor
cell? If the first, sentence can remain as
is. Otherwise the word “in” should be
added, as in “(in a vapor cell)”. A probe
beam enters the cavity through a concave
mirror and a coupling beam enters via a
polarizing beam splitter. As the probe
beam intensity is scanned up and down
using an electro-optic modulator, the cav-
ity output undergoes a clear hysterisis pat-

steady-state values with a switch-

ing ratio of ~30:1 as the frequency of the
coupling laser is modulated [see Fig. 1(d);
from Ref. 5] (Author, if the ° does not
signify that Fig. 1(d) is from Ref. 5,
please clarify the meaning of this super-
script. Thanks.) This is the first experi-
mental demonstration of all-optical fre-
quency-to-amplitude switching in such a
system. The current switching speed is
limited by the speed of our frequency
modulation (~200 kHz).

We have developed an efficient, all-op-
tical switching device by taking advantage
of the sensitive controllability of EIT-en-
hanced Kerr nonlinearity near resonance
in three-level rubidium atoms. While the
current device has not been optimized, we
see it as a proof-of-principle demonstra-
tion that will enable greater advances in
the field of all-optical communication and
information processing. With the advent
of EIT in solid-state materials, it will be
possible to realize the practical applica-
tions of such all-optical switching.
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Figure 1. (a): Kerr-nonlinear index of refraction
versus frequency detuning of the probe beam near
EIT conditions. (b) and (c): Cavity transmission in-
tensity versus cavity input power curves for two
different coupling frequencies separated by 24
MHz. Dotted line indicates probe power used for
all-optical switch. (d) “On” and “Off” switching
states of cavity output intensity. (e) Electro-optic
modulation signal switching the coupling faser fre-
quencies between two values.
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